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Abstract— An (n, k) Reed-Solomon (RS) code is used in a
magnetic recording system to help reduce the Word Failure Rate
(WFR). If the channel Signal-to-Noise Ratio (SNR) exceeds a
certain value, the full power of a given RS code may be needed
only on a few occasions to guarantee a target WFR. When this
occurs, a parity-sharing scheme can be used to group a number
of RS codewords into a larger codeword block. The target WFR
can, therefore, be achieved at a higher code rate. An efficient list-
decoding technique has recently been developed by Guruswami
and Sudan (G-S) that allows error correction beyond the classical
“half-the-minimum-distance” bound. Koetter and Vardy (K-V)
have further extended the G-S algorithm to perform soft-decision
list-decoding. This work will show that G-S hard-decision and
K-V soft-decision list-decoding of parity-sharing codes are both
effective and computationally manageable schemes on the discrete
memoryless and partial response channels.

I. INTRODUCTION

A Reed-Solomon code can be designed to meet a target Word
Failure Rate (WFR) on a discrete memoryless channel (DMC)
that experiences independent symbol errors with probability p.
A WFR is defined to be the rate at which the RS decoder
is unable to find the correct codeword. If a long RS code
is used with this channel, then a codeword will, with high
probability, experience a typical number of errors e [1], [2,
Ch 3.]. Therefore, the number of parities required to achieve
a target WFR approaches 2e from above with increasing code
length. To guarantee a target WFR with a practical code length,
we will require the number of parities to be greater than 2e

because from time to time, a codeword may experience more
than the expected number of symbol errors. However, when we
group a number of codewords together, it is unlikely that many
of the codewords in the group will have experienced more than
the average number of symbol errors at the same time. This
observation leads to the opportunity for parity sharing because
we can use the corrected codewords to help us recover the
codewords that encountered more than the usual number of
symbol errors.

This work deals with list-decoding of parity-sharing RS
codes for use on the DMC and partial response (PR) channels.
In Section II, we illustrate the construction and decoding
approach of a two-level parity-sharing block. The code structure
requires that the codewords be systematically encoded. In
Section III, we discuss how to obtain a systematic generator
matrix for a generalized Reed-Solomon code. In Section IV,
we provide the concepts behind the G-S and K-V algorithms
and show that list-decoding can be extended to treat both errors
and erasures. In Section V, we present the decoding analysis
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Fig. 1. Construction of an (N1, K1), (N2,K2) parity-sharing RS code.

of the two-level parity-sharing RS codes on both the DMC and
the PR channels. We give a technique to calculate the average
WFR that can assist in code design. In Section VI, we verify
our analysis through simulations and demonstrate the efficacy
of parity-sharing codes.

II. TWO-LEVEL PARITY-SHARING REED-SOLOMON CODES
A. Constructing a two-level parity-sharing RS code

A two-level parity-sharing RS code can be constructed in a
fashion similar to a product code; that is, we stack a group of
K2 systematic (N1, K1) RS codewords together and re-encode
the last N1 − M columns using an (N2, K2) systematic RS
code. However, only the first M symbols of each row codeword
and the (N1 − M)×(N2 − K2) shared-parities are transmitted
over the channel as illustrated in Fig. 1. The rate of the parity-
sharing code is K1K2

K2M+(N1−M)(N2−K2)
and a rate gain can be

achieved if N2 < 2K2. We can continue in this way to build
higher level parity-sharing codes. A general construction can
be found in [3].

B. Decoding of the two-level parity-sharing RS code

The two-level parity-sharing RS code is decoded in a turbo-
like approach, shown in Fig. 2. The row codewords are first
errors-and-erasures decoded to correct any erroneous symbols
and fill in the untransmitted symbols. The (N1 − M) column
codewords are then errors-and-erasures decoded to try to correct
any errors in the shared parities and fill in the missing symbols
that could not be decoded in the first row pass. Finally, the rows
are errors-and-erasures decoded again to fill in any remaining
parities and recover the original codewords.
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Fig. 2. Steps to decode a parity-sharing RS code

III. SYSTEMATIC ENCODING OF GENERALIZED
REED-SOLOMON CODES

The two-level parity-sharing scheme requires systematic en-
coding of the information block. Columnwise decoding of the
parity-sharing code (STEP 2, Fig. 2) assumes that parities of
the row code are the information words of the column code.
Without systematic column encoding, the row parities would be
mapped to some other symbols during column encoding. Row
decoding attempts to fill in the information portion of the col-
umn words with row parities. These recovered symbols would
not match the codeword symbols produced by a nonsystematic
column code and column decoding could not proceed.

Our work explores the effects of list-decoding parity-sharing
codes; therefore, we need to consider the definition of Reed-
Solomon codes used by the G-S and K-V decoding algorithms.

Definition 1: An (n, k) Generalized Reed-Solomon (GRS)

code over a finite field Fq is defined as

CRS(n,k) =
{

(f (α1) , f (α2) , · · · , f (αn)) | f (x) ∈ F
k−1
q [x]

}

where Fk−1
q [x] indicates the ring of polynomials in x with

degrees less than k and αi’s are n distinct non-zero elements
of the field.
To construct a parity-sharing code based upon GRS component
codes, we need a systematic generator matrix Gsys. A generator
matrix for the GRS code that is suggested by Definition 1
can be obtained by taking a set of k basis polynomials that
span Fk−1

q [x] and evaluating each polynomial at the code
locators αi. For example, the matrix corresponding to the basis
{

1, x, x2, · · · , xk−1
}

is

Gev =















1 1 · · · 1 1
α1 α2 · · · αn−1 αn

α2
1 α2

2 · · · α2
n−1 α2

n

...
...

. . .
...

...
αk−1

1 αk−1
2 · · · αk−1

n−1 αk−1
n















A generator matrix can be put in systematic form by row and
column operations; equivalently, there exists a transformation
matrix T of size k × k such that the matrix Gsys defined by

Gsys = T · Gev

is systematic.
To find T , we note that the expression for Gsys can be

expanded as
Gsys = T · Gev

= T ·
[

Ak×k | Bk×(n−k)

]

=
[

Tk×k · Ak×k | Tk×k · Bk×(n−k)

]

=
[

Ik×k | Pk×(n−k)

]

.

Since A is a Vandermonde matrix and therefore invertible, we
can write

T = A−1

and set Pk×(n−k) = A−1Bk×(n−k).

IV. LIST-DECODING

A. The Guruswami-Sudan (G-S) algorithm

Guruswami and Sudan developed a polynomial-time list-
decoding algorithm by using bivariate polynomial interpolation
[4]. Given a received word y = (y1, y2, · · · , yn) and the list of
code locators x = (x1, x2, · · · , xn), where yi ∈ Fq and xi ∈
Fq\ {0}, the G-S algorithm generates a set of n coordinates and
attempts to find a polynomial Q (x, y) that fits each coordinate
pair (xi, yi) with a multiplicity of m. The y-roots of Q (x, y)
are the candidate codeword polynomials. The algorithm can
correct up to τ < n−

√

n (k − 1) errors, exceeding the classical
bound. The multiplicity required to correct τ errors is calculated

as m = 1 +

⌊

(k−1)n+
q

((k−1)n)2+4((n−τ)2−(k−1)n)
2((n−τ)2−(k−1)n)

⌋

.

The G-S algorithm can also be viewed as finding a poly-
nomial that interpolates a q × n matrix M with each (i, j)

th



Algorithm 1 The List-Decoding algorithm [4], [7]
Inputs: n, k, q and a size q × n interpolating matrix M

1) Interpolate with multiplicity. Find a bivariate polynomial
Q (x, y) with minimum (1, k − 1) weighted degree that
passes through the nonzero entries (i, j) of M with a
zero of multiplicity mi,j .

2) Factor Q (x, y) into y-roots.
Output: The set of y-roots is the list of candidate codeword
polynomials.

entry marked by a non-negative integer mi,j . This interpolating
matrix has one non-zero entry, with the value m, in each
column. The non-zero entry in column j is in row i, where
yj = αi. Algorithm 1 is then applied to find the list of can-
didate codewords. Efficient methods for bivariate polynomial
interpolation and factorization can be found in [5] and [6],
respectively.

B. The Koetter-Vardy algorithm

Koetter and Vardy developed a technique that uses channel
observations to derive an interpolating matrix M. Algorithm A
[5], [7] takes as input a size q×n reliability matrix Π provided
by the channel and uses this soft information to recursively
find an M that would maximize the inner product 〈Π,M〉. The
K-V algorithm produces a multiplicity matrix M that may have
more than one nonzero entry per column. Once M is found,
Algorithm 1 is used to generate the list of codewords. The
flexibility in multiplicity allocation allows the K-V algorithm
to obtain a better performance and complexity tradeoff than the
G-S algorithm.

C. List errors-and-erasures decoding

The G-S and K-V algorithms can be used for list errors-
and-erasures decoding. In the G-S algorithm, we simply set
the columns of M corresponding to the erased positions to the
all-zeros vector. For a received word with s erasures, the G-S
algorithm can correct up to τ (s) < (n − s)−

√

(n − s) (k − 1)
errors [4]. In the K-V algorithm, we can set the columns
of Π corresponding to the erased positions to the uniform

probability vector
[

1
q
, · · · , 1

q

]T

and run Algorithm A to obtain
an interpolating matrix M. In each of these cases, we apply
Algorithm 1 to M and calculate the candidate codewords.

V. DECODER ANALYSIS

A. The Discrete Memoryless Channel (DMC)

We present the decoder analysis for the parity-sharing
scheme on the DMC. Our approach is based on that proposed
by Collins [1], but we elaborate on the discussion in [1] and
extend the analysis to list-decoding of parity-sharing codes.
The two-level parity-sharing code parameters are indicated in
Fig. 1. We introduce the term µ to be used to reduce the vertical
decoding miscorrection probability, i.e, when µ+2 erasures are
observed in any vertical word, no further decoding attempts of

the component codewords will be made and a decoding failure
would be declared for the entire parity-sharing block.

We denote by En (p, l) the probability of having l or more
symbol errors in a length-n word, where the symbol error
probability is p. Then we can write

En (p, l) = 1 −

l−1
∑

i=0

(

n

i

)

pi (1 − p)
n−i

. (1)

For the two-level parity-sharing scheme, the probability that a
horizontal codeword fails to decode when all vertical codewords
fail is given by

G∞ = EM (p, t + 1) . (2)

The error decoding radius of the punctured horizontal codeword
is t =

⌊

M−K1

2

⌋

. The probability of exactly i horizontal failures
among all the horizontal codewords except the first is given by

Fi =

(

K2 − 1
i

)

Gi
∞

(1 − G∞)K2−1−i
. (3)

We define t (u) =
⌊

N1−K1−u
2

⌋

and t (i) =
⌊

N2−K2−i
2

⌋

. The
probability that a vertical decoding fails given there are i

horizontal erasures is denoted p
(i)
vfail and expressed as

p
(i)
vfail =

N2−K2
∑

j=t(i)+1

(

N2 − K2

j

)

pj (1− p)N2−K2−j
. (4)

The probability that the first horizontal codeword cannot decode
given there are i erasures in the information symbols of the
vertical codewords is

Gi =

N1−M
∑

u=0

(

N1 − M

u

)

(

p
(i)
vfail

)u (

1 − p
(i)
vfail

)N1−M−u

·

M
∑

v=t(u)+1

(

M

v

)

pv (1 − p)
M−v

. (5)

The decoder failure rate (DFR) as shown in [1] is

DFR =

K2−1
∑

i=0

FiGi (6)

and can be bounded as
K2−1
∑

i=0

FiGi ≤ Gµ

µ
∑

i=0

Fi + G∞

K2−1
∑

i=µ+1

Fi (7)

≤ Gµ + G∞

K2−1
∑

i=µ+1

Fi. (8)

The bounds in (7) and (8) follow from the fact that most of the
probability mass of Fi lies in the first µ terms.

The same analysis can be extended to G-S list-decoding. We
replace t in (2) by τ = M −

√

M (K1 − 1), t (i) in (4) by
t (i) = (N2 − i) −

√

(N2 − i) (K2 − 1) and t (u) in (5) by
t (u) = (N1 − u) −

√

(N1 − u) (K1 − 1).



B. Word Failure Rate analysis

Let Nf be the average number of horizontal word failures
when a parity-sharing block fails to decode. Then

Nf = 1 + (K2 − 1) G∞ (9)

because there is at least one horizontal word that failed and
each of the remaining (K2 − 1) words will experience an
independent failure probability of G∞. The average word
failure rate (WFR) can be bounded as

WFR = Nf ·

K2−1
∑

i=0

FiGi

≤ Nf



Gµ + G∞

K2−1
∑

i=µ+1

Fi



 . (10)

C. The Partial Response (PR) channel

We can predict the performance of parity-sharing RS codes
on PR channels with AWGN by employing the technique
developed by Weathers, et. al., [8] to estimate the symbol error
rate. Letting d2 (λ) be the squared distance of an error event λ,
D∗ be the set of all possible d (λ) and σ2 be the noise variance,
then

Pr (bit error) ≤
∑

d∈D∗

Nd · Q

(

d

2σ

)

. (11)

Assuming there are l bits per symbol and that bit errors are
independent, then

Pr (symbol error) ≤ 1 − (1 − Pr (bit error))l
. (12)

For a given channel SNR and σ, we can calculate the symbol
error probability and use this value in the analysis developed
for the DMC in Section V-A to bound the decoder performance
on PR channels. The symbol-based BCJR algorithm [9] is used
to decode the PR channel and a symbolwise block interleaver
is used to distribute the correlated errors. Furthermore, if we
do not hard-limit the symbol-based BCJR output, we can apply
K-V list-decoding to the parity-sharing code blocks.

VI. RESULTS

Using the analysis developed in Section V we plot the
performance of parity-sharing codes. For the DMC, we use
the code parameters N1 = N2 = 255, K1 = K2 = 223,
M = 239, and µ = 27. The result is given in Fig. 3. We
compare decoding of the base RS (255, 223) code versus the
parity-sharing scheme and note that both the classical and (G-
S) list-decoding curves cross at high values of 1−Pr (symbol).
This observation confirms that when the probability of symbol
errors is small enough, the parity-sharing code can exceed the
performance of the base RS code, with a 5.68% rate advantage
obtained by sharing parities. We also compare the list-decoding
curve to the classical decoding curve and note that, just as in the
base case, benefits also result in list-decoding of parity-sharing
codes.

To verify our analytical bounds, we simulated the perfor-
mance of classical and list-decoding for the parity-sharing code.
To save simulation time, the G-S curve is obtained using a
threshold approach [9] and a decoding attempt is declared
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successful as long as the correct codeword is in the list. It is
impractical to run a long simulation to obtain the WFRs at the
intersection points predicted by analysis, but for an obtainable
WFR region we see in Fig. 4 that the analytical calculation
does, in fact, upper bound the simulated performance.

For the EPR4 channel with transfer function h (D) =
(1 − D) (1 + D)

2, we use the code parameters N1 = N2 = 31,
K1 = 26, K2 = 21, M = 29, and µ = 5 to generate results in a
reasonable amount of simulation time. We expect the simulated
decoding behaviour and gain to extend to codes over larger
fields. The analytical bound is given in Fig. 5. We see that the
parity-sharing code achieves a lower WFR than the base RS
code at an SNR above 8.1 dB using classical decoding and
at an SNR above 7.4 dB using (G-S) list-decoding. It becomes
advantageous to use the parity-sharing scheme at SNRs beyond
these cross points due to a 3.5% code rate gain. The simulated
performance is shown in Fig. 6. Threshold conditions are used
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to generate the curves for both G-S and K-V list-decodings.
The analytical bounds are marked by the top two curves. We
note that the bounds are loose when compared to the simulated
results. This is due to the fact that we overestimate the symbol
error rates when using the union bound especially at low SNRs;
nonetheless, our method provides a tool to compare the relative
performance of parity-sharing codes on PR channels and allows
us to select the code parameters according to the design
requirements. We also compare the simulated WFR of the
conventional RS (31, 26) to the parity-sharing PS (31, 26, 21)
code. We see, just as predicted by analysis, that the parity-
sharing scheme achieves a lower WFR at a higher code rate
in both classical and G-S decoding. We also observe that K-
V soft-decision decoding of the parity-sharing code provides
an additional 0.5 dB gain over G-S decoding. The cost of
using parity-sharing codes is the extra computations required
to encode and decode the vertical codewords. Although not
included here, we have results that indicate a reduced WFR can
also be obtained by applying list-decoding to only the vertical
codewords. The analytical and simulated results affirm that list-
decoding of parity-sharing codes is an effective scheme that can
tradeoff performance with computational complexity.

VII. SUMMARY

The performance of block codes improves with codeword
length. For RS codes, the length is constrained by the size of
the field over which the code is defined. The computation and
memory required to carry out Galois field arithmetic increase
with field size and therefore, decoding a long RS code can
be impractical. For a channel with a high SNR, parity-sharing
codes can be used to obtain the performance advantages of
a long block code, but with acceptable complexity. In this
paper, we presented a two-level parity-sharing RS code and
discussed its construction and decoding techniques. The parity-
sharing scheme requires systematic encoding of the component
codewords. We, thus, provided a simple method of finding
the systematic generator matrix for a generalized RS code.

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

SNR (dB)

W
FR

WFR on the EPR4 channel

PS(31,26,21) classical (bound)
PS(31,26,21) G−S (bound)
RS(31,26) classical (sim)
PS(31,26,21) classical (sim)
RS(31,26) G−S (sim)
PS(31,26,21) G−S (sim)
PS(31,26,21) K−V (sim)

Fig. 6. Simulated decoding performance on the EPR4 channel. The number
of interpolation points used by K-V decoding is S = 50 · N1.

We reviewed the G-S and K-V list-decoding algorithms, and
showed that they can be used in list errors-and-erasures de-
coding. We then calculated upper bounds on the WFR when
applying classical decoding and the G-S list-decoding to parity-
sharing codes over the DMC and PR channels. Our bounds
demonstrated that parity-sharing codes can exceed the perfor-
mance of conventional RS codes at high channel SNRs while
obtaining a higher code rate. We also observed that G-S list-
decoding of parity-sharing codes can lead to a lower WFR
versus classical decoding, just as in the case of conventional
RS codes. Moreover, the WFR can be reduced further by
applying the K-V soft-decision decoding algorithm. Through
simulations, we verified that our bounds on the WFRs are good
indicators of relative performance and can assist in code design.
List-decoding of parity-sharing codes is a potentially attractive
scheme for use in magnetic recording systems.
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